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The immersed boundary method is known to exhibit a high degree of numerical
stiffness associated with the interaction of immersed elastic fibres with the surround-
ing fluid. We perform a linear analysis of the underlying equations of motion for
immersed fibres, and identify a discrete set offibre modeswhich are associated
solely with the presence of the fibre. This work generalises our results in a previous
paper (1995,SIAM J. Appl. Math.55, 1577) by incorporating the effect of spread-
ing the singular fibre force over a finite “smoothing radius,” corresponding to the
approximate delta function used in the immersed boundary method. We investigate
the stability of the fibre modes, their stiffness, and their dependence on the problem
parameters, focusing on the influence of smoothing. We then extend the analytical
results to include the effect of time discretisation, and draw conclusions about the
time step restrictions on various explicit schemes, as well as the convergence rates
for an iterative, semi-implicit method. We draw comparisons with computations and
show how the results can be applied to help in choosing alternate time-stepping
schemes that are specially tailored to handle the stiffness in immersed fibres. In
particular, we present numerical results that show how fully explicit Runge–Kutta
schemes perform in comparison with the best of the semi-implicit schemes currently
in use. c© 1999 Academic Press
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1. INTRODUCTION

Some of the most challenging problems in scientific computation involve the interaction of
a viscous fluid with complex, moving boundaries. One approach that has proven particularly
effective in handling a variety of such problems is theImmersed Boundary Method,which
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was originally developed by Peskin [15] to compute the flow of blood in a two-dimensional
model of the heart. The method is a mixed Eulerian–Lagrangian scheme, in which the
equations describing the fluid motion are discretised on a fixed, Cartesian mesh, while
the immersed boundary is tracked at a set of points that move relative to the underlying
fluid grid. The coupling between the fluid and fibre is accomplished using smoothed delta
functions, which serve to interpolate quantities between the two grids. The method has since
been extended to three-dimensional simulations of flow in the heart and arteries [20, 16] and
a diverse collection of other problems, including swimming motions of marine worms [6],
particle suspensions [8], and wood pulp fibre dynamics [22], to name a few. Furthermore,
the idea of using smoothed delta functions to approximate singular forces generated on
internal boundaries is a technique that has recently been applied in concert with a variety of
other numerical methods including particle-in-cell [10], finite element [24, 26], and level
set methods [3].

Considering the widespread use of immersed boundaries as a modeling and computational
tool, very little analysis has been performed on either the underlying model equations or
the numerical method. Exact solutions were derived for a fibre immersed in an inviscid
fluid [5], and for variations of the problem specialised for viscous flow through particle
suspensions [7] and in the inner ear [12]. Beyer and LeVeque [2] analysed a one-dimensional
version of the immersed boundary method, and showed that it is limited to first order spatial
accuracy by the delta function approximation. This limitation on accuracy has also been
confirmed computationally in higher dimensions [11]. Computations also indicate that the
problem suffers from a high level of numerical stiffness, and considerable effort has gone
into developing semi-implicit variants of the method that aim to alleviate the severe time step
restrictions [25, 13]. However, these attempts have met with limited success, and the majority
of computations are still performed using an explicit treatment of the immersed boundary.

Our purpose in this paper is two-fold: first, to examine the stability and stiffness character-
istics of incompressible, viscous fluid flows containing moving, elastic fibres; and second, to
use these results as a basis for evaluating the efficiency of various explicit and semi-implicit
time-stepping schemes. This work is based on an earlier paper [23] that employed a linear
stability analysis to identify solution modes arising solely from the presence of an immersed
fibre. The severe stiffness observed in computations was traced to the presence of these “fi-
bre modes,” and attributed to a combination of small viscosity and large fibre force. Hence,
fluid flows with immersed fibres experience something very unlike the usualReynolds num-
ber limitationencountered in flows without a fibre. While our previous paper was able to
pinpoint the source of the stiffness and its dependence on the parameters, the predicted time
step restrictions were much smaller than those actually experienced in computations.

In the current paper, we address this discrepancy by including the effects of smoothing
through delta function approximation, and thereby gain a better quantitative measure of the
stiffness inherent in fibre modes. We begin in Section 2 with a statement of the equations
governing the motion of an isolated fibre immersed in a two-dimensional Stokes flow, and
then briefly outline the immersed boundary method. The linear analysis of the immersed
fibre problem with a smoothed forcing term is performed in Section 3, which yields a
dispersion relation for the fibre modes. The behaviour of these modes is compared to
computed solutions and to our earlier work on the analytical solution for the exact delta
function problem. Section 4 extends our analysis to time discretisations, and uses stability
diagrams to investigate the time step restrictions on schemes that are explicit in the fibre
force. We explore a particular semi-implicit discretisation, which can be formulated as
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an iteration on the fibre position, and verify the predicted convergence rates in numerical
experiments. Finally, through comparisons of the various time-stepping schemes, we show
that a fully explicit, fourth order Runge–Kutta method can be competitive with the semi-
implicit schemes that are currently in use.

2. IMMERSED FIBRES

For the remainder of this work, we will consider an isolated fibre0, immersed within
a rectangular domainÄ that is filled with a viscous, incompressible fluid (refer to Fig. 1).
We single out a lone fibre for reasons of mathematical convenience, a simplification which
seems reasonable when one considers that even the most complex immersed surfaces in
three dimensions, such as the heart model in [16], are constructed of interwoven networks
of such fibres. The fibre is assumed massless and neutrally buoyant, so that the fluid and
fibre can be treated as a composite, viscoelastic material, described by a single velocity
field. This is the major advantage of the model, since it allows the fluid and fibre to be
described by the same set of equations.

2.1. Mathematical Formulation

Consider a square fluid domain,Ä = [0, 1]× [0, 1], with periodic boundary conditions
in both thex- and y-directions. The motion of the fluid–fibre composite is governed by
Stokes’ equations

ρ
∂u
∂t
= µ1u−∇ p+ F, (1)

∇ · u = 0, (2)

whereu(x, t) = (u(x, t), v(x, t)) is the fluid velocity,p(x, t) is the pressure,F(x, t) is the
fluid body force, andρ andµ are the (constant) fluid density and viscosity.

Our reason for considering Stokes’ equations (and ignoring the effects of convection) is
that the serious numerical stability problems encountered in computations are well known
to arise from the stiffness in the immersed boundary. While high Reynolds number flows do
require a finer mesh to resolve the boundary layer effects around complex elastic structures,

FIG. 1. The two-dimensional model: a fluid domain,Ä, which is divided into two parts,Ä+ andÄ−, by an
immersed fibre0.
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and thereby naturally require a smaller time step, there is no inherent Reynolds number
limit on the immersed boundary method. The method is not tied to a specific fluid solver,
and even when one uses alternate solvers specially tailored to handle convection-dominated
flows, the stiffness in the immersed fibres is still the major consideration [19].

The position of the fibre is given byx = X(s, t), wheres is a parameterisation of0
in some reference configuration. Since0 is constrained to move at the same velocity as
neighbouring fluid particles, we write

∂X
∂t
= u(X(s, t), t). (3)

The final element needed to close the system is an expression for the forceF. Because
the fibre is neutrally buoyant, we assume that gravitational effects are negligible, so that the
external forceF arises solely from the action of the elastic fibre. LetT(s, t) be the tension
force in the fibre and assume thatT is a function of the fibre strain:

T = T

(∣∣∣∣∂X
∂s

∣∣∣∣). (4)

It can be shown under further assumptions [16] that the local force density per unit length
is given by the expression

f(s, t) = ∂

∂s
(Tτ ), (5)

whereτ is the unit tangent vector to0. For example, if the tension depends linearly on the
strain asT = σ |∂X/∂s|, then Eq. (5) reduces to

f = σ ∂
2X
∂s2

. (6)

Taking (6) as the force density is analogous to linking successive fibre points by linear
springs with spring constantσ and zero resting length.

Since the force is zero everywhere except on the fibre, the fluid body forceF can be
regarded as a distribution and written compactly as the convolution of the fibre force density
with a delta function,

F(x, t) =
∫
0

f(s, t) · δ(x− X(s, t)) ds, (7)

whereδ(x) = δ(x) · δ(y) is the product of two Dirac delta functions. Finally, we rewrite
the right hand side of the fibre evolution equation (3) in the form of a convolution of the
velocity with a delta function

∂X
∂t
=
∫
Ä

u(x(s, t), t) · δ(x− X(s, t)) dx. (8)

There is now clearly a certain symmetry between Eqs. (7) and (8), which will prove to
be very useful in Section 2.2 from the standpoint of constructing a numerical scheme.
Equations (1), (2), and (8), along with the definition of the fibre force in (4), (5), and (7),
form a coupled system of integro-differential equations for the motion of the fluid and fibre.



STIFFNESS AND TIME-STEPPING FOR IMMERSED BOUNDARIES 45

It is important to mention that there is another, equivalent formulation of the problem,
in which the singular delta function terms are supplanted by jump conditions that relate
the fluid stress on either side of the fibre. This “jump formulation” was the basis of our
analysis in [23], but is inappropriate for the current work where our aim is to determine the
investigate the effect of replacing the delta function with a smooth approximation.

2.2. Immersed Boundary Method

There are many variants of the immersed boundary method, but we will present the method
in a form very similar to that originally proposed in [15], and which is still commonly in
use. This scheme is explicit in the fibre force, and any discussion of details related to
semi-implicit discretisations will be postponed until Section 4 when they are needed.

The fluid domain is divided into a fixed,N × N grid of points denotedxi, j = (xi , yj ) =
(ih, jh), with spacingh = 1/N in both directions. The domain is doubly periodic so that
the pointsx0 and xN are identified with each other, and similarly withy0 and yN . The
fibre position is a Lagrangian quantity which is discretised at a set ofNb moving points,
with the parameters ∈ [0, 1] taken at discrete locationssl = l · hb, wherehb = 1/Nb.
Both fluid and fibre unknowns are sampled at equally spaced time intervalstn = n · k,
wherek is the time step. Figure 2 shows a typical fluid–fibre grid. The discrete velocity is
written asun

i, j ≈ u(xi , yj , tn) at fluid grid pointsi, j = 0, 1, . . . , N − 1 andn = 0, 1, . . . ,
with analogous expressions for pressure and force. Similarly, the fibre position is denoted
Xn

l ≈ X(sl , tn), for l = 0, 1, . . . , Nb − 1.
The delta functions appearing in (7) and (8) are replaced by an approximationδ2h(x),

which is the product of two one-dimensional discrete delta functions

δ2h(xi , yj ) = d2h(xi ) · d2h(yj ).

The choice ofd2h most commonly used in immersed boundary computations is

d2h(r ) =
{

1
4h

(
1+ cosπr

2h

)
if |r | < 2h,

0 if |r | ≥ 2h,
(9)

although other choices are possible [21]. It will become clear in the algorithm to follow that
δ2h(x) acts to interpolate quantities between the fluid and fibre grid points.

FIG. 2. The relationship between fluid (©) and fibre (+) grid points.
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When writing the scheme, we will make use of the following notation for finite difference
operators on the fluid grid. First and second derivatives are approximated using second order
centered differences

Dxφi, j = φi+1, j − φi−1, j

2h
and Dxxφi, j = φi+1, j − 2φi, j + φi−1, j

h2
,

with similar expressions for they-derivatives,Dy and Dyy. The discrete gradient and
Laplacian operators are then given by

∇hφi, j = (Dx, Dy) φi, j and 1hφi, j = (Dxx + Dyy) φi, j ,

and the second derivative of fibre quantities is denotedDssψl .
We are now in a position to state the algorithm, which is a discrete version of Eqs. (1),

(2), (6), and (8). Assuming that the velocityun
i, j and fibre positionXn

i, j are known at time
tn−1, the procedure for updating these values to timetn is as follows:

Step1. Compute the fibre force density

f n
l = σDssXn−1

l , (10a)

where we have assumed, for simplicity, that the force is a linear function such as that in
Eq. (6).

Step2. Distribute the fibre force to fluid grid points

Fn
i, j =

Nb−1∑
l=0

f n
l · δ2h

(
xi, j − Xn−1

i, j

) · hb. (10b)

Step3. Solve the discrete Stokes problem

ρ

(
un

i, j − un−1
i, j

k

)
= µ1hun

i, j −∇h pn
i, j + Fn

i, j , (10c)

∇h · un
i, j = 0, (10d)

which is a simultaneous system of equations for the velocityun
i, j and pressurepn

i, j at
time leveln. Because the fluid grid is rectangular and equally spaced and the boundary
conditions are periodic, this system can be solved very efficiently using a Fast Fourier
Transform (see [14] for details).

Step4. Evolve the fibre at the new local fluid velocity

Xn
l − Xn−1

l

k
=

N−1∑
i, j=0

un
i, j · δ2h

(
xi, j − Xn−1

l

) · h2. (10e)

Step5. Incrementn and return to Step 1.

Since this algorithm applies an implicit (Backward Euler) discretisation to diffusion
terms, and a Forward Euler step for the fibre force and position, we will refer to it as the
Forward Euler/Backward Euler, or FE/BE, method. This designation will also serve to
distinguish it from other semi-implicit time-stepping schemes that will be introduced later,
in Section 4.
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3. LINEAR STABILITY ANALYSIS

As mentioned in the Introduction, a great deal of effort has gone into applying the
immersed boundary method to various physical problems and improving its efficiency.
However, comparatively little work has been done on analysing the behaviour of solutions
to the underlying equations of motion [12, 7, 5]. In this section we will use an approach
akin to that in [12, 7] to perform alinear modal analysisof the immersed fibre problem
in a more general form. We are able to obtain details about discrete modes associated with
immersed fibres which relate to the stiffness observed in immersed boundary computations.

3.1. Linearisation and Smoothing

Consider a portion of the fluid domain, labeledÄ0 in Fig. 1, on which the immersed fibre
is approximately flat. Suppose that the fibre is at equilibrium along the horizontal liney= 0,
and that its current position is a small perturbation from this rest state. For the purpose of
isolating the influence of the fibre on the flow, we extend the boundaries ofÄ0 to infinity
in the y-direction as in [23].

A common form of the tension used in immersed boundary computations [25] isT =
T(|∂X/∂s| −1)with T(0)= 0, corresponding to a fibre which is slack in the reference con-
figuration|∂X/∂s| =1. However, most physical applications involve fibres under tension,
and so we choose an equilibrium state defined by|∂X/∂s| = θ , corresponding to a fibre that
is either under tension (θ >1) or slack (θ = 1) in its rest state. The solution is then linearised
by supposing a perturbation of the form

X(s, t) = (θs+ ξ(s, t), η(s, t)), (11)

and assuming thatξ , η, u and their derivatives are small.
We next incorporate the effect of smoothing the delta function which is inherent in

the immersed boundary method. To this end, we introduce a strip of widthε, called the
smoothing region, on either side of the fibre, whereε represents the radius of support of
the approximate delta function. The fluid domain,Ä0, is now divided into three subregions,
Ä+0 ,Ä−0 , andÄε0, as pictured in Fig. 3. The smoothed delta function, denoteddε(x), is the
cosine function introduced in Eq. (9) withε= 2h corresponding to the smoothing radius
ε= 2h used in actual computations.

FIG. 3. A blow-up of the regionÄ0 in Fig. 1, with the fibre at equilibrium alongy= 0, and the smoothing
regionÄε

0, of width 2ε.
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Stokes’ equations now read

ρ
∂u
∂t
= µ1u−∇ p+

∫
0

f(s, t) · δε(x− X(s, t)) ds, (12)

∇ · u = 0, (13)

where the integral term has support only on the smoothing regionÄε0, and is zero elsewhere.
The linearisation of Eqs. (4) and (5) follows that of [23], and so we will simply state the
result, that

f(s, t) ≈
(
σt
∂2ξ

∂s2
, σn

∂2η

∂s2

)
, (14)

where the normal and tangential force coefficients are given byσn:= T(θ)/θ andσt := T ′(θ).
Finally, the fibre evolution equation can be written as an integral solely over the smoothing
region:

∂X
∂t
=
∫
Äε0

u(x, t) · δε(x− X(s, t)) dx. (15)

The remainder of Section 3 is devoted to solving the linearised equations of motion and
examining the behaviour of the resulting solution modes.

3.2. Derivation of the Dispersion Relation

We now look for separable solutions of Eqs. (12)–(15) that have the form of Fourier
modes 

u
v

p

 = eλt+ı̂αx


û(y)

v̂(y)

p̂(y)

 and

{
ξ

η

}
= eλt+ı̂αθs

{
ξ̂

η̂

}
,

where the wavenumberα is a positive real number, andı̂ =√−1 is the imaginary unit. The
exponential time factorλ embodies the growth or decay characteristics of each solution
mode. One such solution must be found foru, v, and p on each of the three subdomains
Ä±0 andÄε0. After these expressions are substituted into Eqs. (12) and (13) onÄ±0 , where
the force term is zero, Stokes’ equations reduce to a system of ODEs with solution

p̂±(y) = A±e∓αy, (16a)

û±(y) = B±e∓βy − ı̂α

ρλ
A±e∓αy, (16b)

v̂±(y) = ± ı̂α

β
B±e∓βy ± α

ρλ
A±e∓αy, (16c)

whereβ is a new parameter defined byβ2 = α2+ ρ

µ
λ with Re (β)≥ 0.

Within the smoothing region, the integral forcing terms lead to a system of coupled
integro-differential equations. After we linearise the delta functions and drop all terms of
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second order or higher in the “ ˆ ” solution components, these equations reduce to [21](
ρλ+ µα2− µ d2

dy2

)
ûε + ı̂α p̂ε = −σtθα

2D̂ε ξ̂ dε(y), (17a)(
ρλ+ µα2− µ d2

dy2

)
v̂ ε + d p̂ε

dy
= −σnθα

2D̂ε η̂ dε(y), (17b)

ı̂αûε + dv̂ε

dy
= 0, (17c)

λξ̂ = D̂ε

∫ ε

−ε
ûε(y) · dε(y) dy, (17d)

λη̂ = D̂ε

∫ ε

−ε
v̂ε(y) · dε(y) dy. (17e)

The expressionD̂ε arising above is the Fourier transform of the smoothed delta function,
which for the cosine approximation is

D̂ε :=
∫ ε

−ε
eı̂αr dε(r ) dr = π2 sin(αε)

αε (π2− α2ε2)
.

We draw the reader’s attention to the fact that the parameterθ , distinguishing slack fibres
from those under tension, appears simply as a multiple of the forcing parameter in (17a) and
(17b). Consequently, we will assume for the remainder thatθ ≡ 1, which is equivalent to a
rescaling ofσn andσt . We should mention that Cortez and Varela’s analysis of a circular
fibre [5] identifies a significant difference between the motion of a fibre depending on
whether it is slack or under tension. However, their results are restricted to inviscid flow,
and apply to the bulk motion (wavenumberα= 0) of the fibre. Our “flat fibre” analysis, on
the other hand, is insensitive to vertical translations of the fibre and is intended instead to
capture the behaviour of the wavenumbersα >0.

Sinceξ̂ and η̂ are constants, one may solve (17a)–(17c) for the velocity and pressure
without knowing the fibre positionsa priori. The resultingûε and v̂ε are substituted into
(17d) and (17e), yielding expressions forξ̂ andη̂, which are then used to find the velocity.
This procedure involves extensive algebraic manipulations, for which we found the symbolic
algebra package MAPLE [4] indispensable. Unlike the solutions (16a)–(16c) onÄ±0 , the
expressions onÄε0 are extremely lengthy, and so they are not presented here.

At this point, we have expressions for the solution components on three regions, each
involving several unknown constants of integration. OnÄ±0 , Eqs. (16a)–(16c) involve the
four coefficientsA± andB±, and the solution onÄε0 introduces an additional four constants
of integration. In order to determine the solution uniquely, we require a further eight con-
ditions relating the eight constants, which arise quite naturally from matching the solutions
at the interfacesy=±ε. Four matching conditions ensue from the requirement that the
pressure, velocities, and normal derivativedû/dy be continuous at the interfacey= ε, and
the remaining constraints arise from continuity aty=−ε.

The resulting system of equations is linear and homogeneous, and so there is a non-trivial
solution only if the determinant of the 8× 8 coefficient matrix is zero. The determinant
condition is simply adispersion relation, whose solutions giveλ as functions ofα. The
dispersion relation is fairly complicated, and so is presented separately in the Appendix,
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although it can be written symbolically as

Sεn(β) · Sεt (β) = 0. (18)

The subscriptsn andt on the two factors in (18) correspond to the fact that the fibre force
parameterσn appears only in the factorSεn(β), while Sεt (β) depends only onσt . After (18)
is solved for rootsβ, the growth rates are obtained viaλ = µ

ρ
(β2− α2).

As in the dispersion relation for the unsmoothed problem from [23], there is a decoupling
between the normal and tangential fibre modes. However, the dispersion relation is no longer
a polynomial, as it was for the jump problem, since the factors in Eq. (18) involve trigono-
metric and exponential functions of the parameters (see the Appendix). Consequently, there
is no analytical expression for the solutionsβ and our only recourse is to apply a numer-
ical root-finding technique such as Newton’s method. The presence of exponential terms
in the dispersion relation makes the equation very ill-conditioned, particularly when the
wavenumber or the force is large. The Newton solver requires a careful rescaling of the
dispersion relation in conjunction with quadruple precision arithmetic and continuation inε.

3.3. Stability and Stiffness of Fibre Modes

In order to make these results as applicable as possible to previous work, we have chosen
representative parameter values from computations reported in the literature for biological
applications (primarily from [6, 15, 16]). We chooseρ= 1.0 g/cm3 and the forcing parameter
σ to lie between 104 and 106 g/cm· s2, whereσ ≡ σn = σt . The viscosity used in many
biological applications (involving intra-cellular fluid, for example) isµ= 0.01 g/cm· s,
while that for blood is 0.04 g/cm· s. However, most immersed boundary simulations of the
heart and arteries have been forced to takeµ = 1.0 in order to avoid limitations on the
time step. The domain is a square with sides of length 1 cm, on which is laid a 64× 64
computational grid, and the fibre is discretised at 196 points; i.e.,N= 64, ε= 2

64, and
Nb= 196. We performed grid refinement studies which demonstrate that the results we
present next do not change significantly as the number of grid points is increased.

We now consider a discrete set of wavenumbers,α = 2π · i , for i ∈ {1, 2, . . . , N},
corresponding to the modes that can be resolved on an equally spaced grid with mesh
spacingh= 1

N in thex-direction. By restrictingα in this manner, we are still dealing with
the continuous equations but have discretised the problemin an idealised sense. We also
choose the smoothing lengthε= 2

N to agree with the radius of support for the delta function
in the immersed boundary method.

Stability. For all wavenumbers and parameter ranges that we have considered, the so-
lution modes arising from the dispersion relation exhibit a decay rate with negative real
part; that is,Re (λ)<0. While this is not as strong a result as the stability proof presented
in [21] for the jump formulation of the problem, it still provides compelling evidence that
the smoothed fibre modes are also stable in time.

Stiffness. The stiffness of the immersed fibre problem is characterised by the size of the
complex eigenvaluesλ. A large variation in the magnitude of the real partRe (λ) indicates
a solution with components that decay on widely varying time scales; correspondingly, a
large variation inIm (λ) points to modes with disparate frequencies of oscillation. In both
cases, the problem is distinguished by a mixture of time scales that differ in size by orders
of magnitude: any computation based on such a problem requires the use of stiff solvers.
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TABLE I

Comparison of the Maximumλ for Solution Modes of Stokes’ Equations, the Jump

Formulation, and the Smoothed Problem withσ = 105

µ = 0.04 µ = 1.0

max|R e (λ)| max|Im (λ)| max|R e (λ)| max|Im (λ)|

Stokes modes 6.4× 103 0.0 1.6× 105 0.0
Fibre modes ( jump) 5.7× 106 9.6× 106 6.3× 105 9.0× 105

Fibre modes (smooth) 3.5× 103 6.1× 104 5.9× 104 1.3× 104

By examining the decay ratesRe (λ), and frequencies of oscillationIm (λ), we can
quantify the stiffness of the solution and its dependence on parameters. Table I summarizes
the maximum values ofλ for the jump and smoothed formulations of the problem, with
σ = 105 representative of the range of forcing parameters encountered in physical problems.
TheStokes modescorrespond to solutions of Stokes’ equations without an immersed fibre,
for whichλS=−µ

ρ
α2.

Let us begin by comparing the Stokes problem without a fibre to the “jump” problem with
a delta function force, from which it is clear that the presence of an immersed fibre affects the
rate of decay of solution modes considerably, while also introducing significant oscillatory
features in the solution. The fibre therefore introduces a certain degree of stiffness in the
problem, which translates numerically into a stricter requirement on the time step in the
immersed boundary method. The magnitude ofλ increases by a factor of 7 whenµ = 1.0,
and by almost 2000 forµ = 0.04. It is here that the unsmoothed analysis over-predicts the
stiffness observed in computations. The maximum allowable time step typically depends
inversely on the magnitude of the solution modesλ, from which the first two rows of
Table I suggest that immersed boundary computations should require a time step orders
of magnitude smaller than that for Stokes flow without a fibre. On the contrary, immersed
boundary computations with the moderate forcing ofσ = 104 exhibit time step restrictions
comparable to those in flows without an immersed fibre, even when viscosity is taken as
small as 0.04.

This discrepancy can be attributed to exclusion of smoothing effects in the jump formu-
lation of the problem. The final row of Table I indicates that the smoothed modes are more
comparable in size with the Stokes modes, and hence much more in line with what is seen
in actual computations for this example. Nevertheless, the appearance of a large imaginary
part ofλ translates into a considerable degree of stiffness, which is also observed in compu-
tations for this parameter range. It is clear that it is necessary to include smoothing effects,
as done in this paper, to predict time step restrictions for immersed boundary calculations.

Figure 4 gives a pictorial representation of the effect of smoothing on the entire discrete
spectrum of fibre modes. Replacing the delta function with a smoothed approximation
clearly has a profound effect on the decay and frequency characteristics of an immersed fibre,
particularly for the larger wavenumbers. However, it appears that the lowest wavenumber
modes (withα = 2π ) match quite well between the two problems, which suggests that the
dominant solution features are relatively unchanged by smoothing.

It is interesting to compare the sizes of solution modes in terms of viscosity in Table I.
While a reduction inµ decreases the stiffness of the Stokes problem considerably, the
smoothed fibre modes are affected to a much lesser degree, with the modes only decreasing
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FIG. 4. A comparison ofR e (λ) and Im (λ) for the jump and smoothed dispersion relations withα ∈
[2π, 128π ], µ= 0.04, andσ = 105.

by a factor of 2 in magnitude, and the imaginary part actually becoming larger (the impli-
cations of this behaviour for time-stepping will become obvious in the next section). On
the other hand, the dependence of the fibre modes onσ is much stronger, with the stiffness
of the problem intensifying as the forcing parameter is increased. Theσ dependence was
not included in Table I, since a detailed discussion of the effect ofσ andµ on the time step
restrictions, along with comparisons to actual computations, will be given in Section 4.

Finally, we observed that without exception the largest growth rates arose from thetan-
gentialterm in dispersion relation, with the normal modes smaller and similar in magnitude
to Stokes’ modes. This is consistent with the asymptotic result of our previous work which
showed that the normal fibre modes are similar in magnitude to Stokes’ modes in the large
σ limit [23]. Therefore, the stiffness in the problem may be traced to tangential oscillations
of the immersed fibre. It is very possible that the decoupling of the fibre modes may be
exploited to develop more efficient numerical solvers, perhaps using some form of rescal-
ing or preconditioning based on a local linearisation near the fibre which singles out the
tangential motions.

4. TIME-STEPPING SCHEMES

The linear analysis of the preceding section showed that the fibre modes capture the
qualitative behaviour manifested in computations, provided the smoothing effect of the
delta function approximation is taken into account. We will now use these stiff fibre modes
to explain the severe time step restriction on immersed boundary computations in which
the fibre is treated explicitly. Byexplicitwe refer to a method (such as theFE/BEapproach
outlined in Section 2.2) that treats the fibre position and forcing term explicitly, regardless
of whether the viscous and pressure terms are treated implicitly or explicitly. As we will
see in Section 4.1, it is in fact the fibre forcing terms that govern the time step in explicit
computations.

The severe stiffness arising from the immersed boundary problem and the correspond-
ingly strict time step limit in computations have been well documented in the literature
[15, 25]. As a result, the importance of dealing with the immersed fibres in an implicit fash-
ion is obvious, and a great deal of effort has gone into developing variations of the method
that couple the fibre terms in the equations implicitly with the fluid. We have separated the
various methods into the following four classes, based on the manner in which the fibre
force term and fibre evolution equation are discretised:
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A. Explicit: schemes that are explicit in the fibre force and position, and yet couple the
diffusion terms implicitly (that include theFE/BEscheme of Section 2.2). The vast majority
of recent computations couple diffusion and convection implicitly by combining an ADI
step with a pressure projection step. More recently, it has been recognised that convection
is not so important in relation to the stiffness arising from the fibre, and the fluid equations
have been solved using a coupled Stokes solver, while treating convection terms explicitly
using upwind differencing [17, 14].

B. “Approximate implicit” : a scheme that couples the fibre force with the fibre evolu-
tion equation to form an iteration on the fibre position that is independent of the fluid
unknowns [15]. Once the iteration has converged, theintermediate or predicted fibre posi-
tion is used to compute the fibre force in the fluid equations, which are then solved using
the same techniques as those for the explicit schemes. While this is not truly an implicit
scheme (and hence the name), the iteration helps to prevent violent instabilities in fibres
with extremely large force parameters. An alternate formulation of this class of iterative
schemes was developed in [8] in terms of minimising an energy functional for the fibre
position.

C. Semi-implicit: schemes that couple the fibre with the fluid unknowns in an iterative
fashion, such as the method proposed by Mayo and Peskin [13].

D. Fully implicit: schemes in which the fibre and fluid unknowns are solved simultane-
ously. Tu and Peskin [25] implemented a fully implicit solver for Stokes flow and showed
that while it appeared to be unconditionally stable, this approach was far too expensive for
practical computations.

It is methods A and B that have been used most often in practice, with the majority of
recent computations using the explicit technique A. While the approximate implicit scheme
does help to ease the severe stability restrictions in problems with extremely largeσ , it is
our experience that the added cost of the iteration embedded in each time step essentially
wipes out any advantage that would have been gained by taking larger time steps. The
predominance of explicit schemes, which are extremely simple to program, is thus not
surprising.

Nonetheless, the stability restrictions on explicit computations persist, and remain a seri-
ous limitation on the type of problem that can be simulated numerically. We have shown that
the stiffness arises not from Reynolds number effects, but rather from a large fibre forcing pa-
rameter. While implementing a better fluid solver might provide improved resolution of the
fine-scale boundary layer effects present in high Reynolds number (convection-dominated)
flows, it will not help deal with the stiffness in immersed boundary computations arising
from the fibre forcing terms, which is present even in the absence of convection. On the
contrary, it is essential that more efficient implicit or semi-implicit schemes be developed
which deal specifically with the stiffness that dominates computations when the fibre forcing
term is large.

In this section, we restrict our attention to explicit and semi-implicit schemes. The fibre
modes derived in the last section will be used to derive stability restrictions for various ex-
plicit time-stepping schemes, using a straightforward application of stability diagrams. The
Runge–Kutta family of schemes exhibits the most desirable properties of explicit schemes,
and we briefly describe a class of semi-implicit schemes, similar to theFE/BEmethod, but
which use an Implicit–Explicit Runge–Kutta (orIMEX–RK) approach instead. Finally, we
demonstrate how our modal analysis can be extended to time discrete problems, and this
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technique will be applied to the Mayo–Peskin method in order to estimate convergence
rates for the iteration.

4.1. Explicit Schemes

In the following discussion, we distinguish between the solution modes arising from
an idealised discretisation of the smoothed fibre, and those from Stokes flow without an
immersed boundary, since the time step in a discretisation of the immersed fibre problem
is limited by a combination of diffusive and fibre effects. Figure 5 depicts the relative size
of both sets of solution modes in theλ-plane, forσ = 104 and 106, with the Stokes modes

FIG. 5. Region of absolute stability for the Forward Euler scheme, along with the smoothed fibre modes (©)
from Eq. (18), and Stokes modes (∗) fromλ=− µ

ρ
α2. The stability boundary, drawn as a solid line in plots (a) and

(b), is computed on the basis of the Stokes modes, while the maximum allowable time steps,k∗ andk◦, are listed
for each set of modes. Note the difference in the scales used on the vertical axes, particularly from (a)→ (b), and
(c)→ (d).



STIFFNESS AND TIME-STEPPING FOR IMMERSED BOUNDARIES 55

marked∗ and fibre modes◦. Note that these plots correspond to the complete set of modes
for the results presented earlier in Table I. The solid curves represent the boundary of the
region of absolute stability for a Forward Euler discretisation, based on Stokes modes,
while the maximum time step allowed by Forward Euler for both sets of modes (denoted
k∗ andk◦) are listed on each plot for easy comparison of the stability limits. Figure 5(a),
corresponding toµ= 1.0, demonstrates that the time step restriction for a fibre force of
σ = 104 is comparable to that experienced in the absence of the fibre. Whenσ is increased
to 106 in Fig. 5(b), however, the modes migrate outward along the imaginary axis, requiring
a much smaller time step. A similar worsening of stiffness is observed when the viscosity is
decreased, as shown in the remaining plots in Figs. 5(c) and (d) for the much lower viscosity
of µ = 0.04.

It is precisely the parameter regime corresponding to large fibre force and small vis-
cosity where immersed boundary computations have been observed to encounter the most
difficulty. In numerous heart valve simulations reported in the literature [16, 18], a careful
scaling argument was required to justify choosingµ = 1.0, instead of the actual viscosity
of blood,µ ≈ 0.04, in order for the time step requirement in computations to be practical.
The most significant conclusion that can be drawn from this discussion is that the stiffness
in the immersed boundary method arises from the interaction of the fibre and fluid, through
a combination of large fibre force and small viscosity, rather than the high Reynolds number
effects that limit typical fluid flow calculations for other problems not characterised by this
fluid–structure interaction.

A simple strategy for countering the stiffness is to search for different explicit schemes
that deal more effectively with solution modes that tend to cluster near the imaginary axis.
An obvious candidate for an alternative explicit time-stepping technique is the Runge–Kutta
(RK) family of schemes. Figure 6 presents the results of fully explicit computations using

FIG. 6. Comparison of computed time step restrictions for the Runge–Kutta schemes and the ADI implemen-
tation of the immersed boundary method, forµ= 0.01.
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TABLE II

CPU Times for theσ = 2.5× 105 Full Immersed

Boundary Computations in Fig. 6

CPU time requiredb

Scheme µ= 1.0 µ= 0.01

RK1 370.59 1658.21
RK2 138.12 143.02
RK3 110.87 99.44
RK4 109.76 52.64

FE/BE 53.96 54.12

a Performed on an SGI Origin 2000 (4× 195 MHz R10000
processors, 512 Mb RAM).

b In seconds.

the Runge–Kutta schemes of orders 1 through 4, for various choices of the fibre forcing
parameter. The semi-implicitFE/BEresults are included for comparison. We can see from
the plots of maximum time step for the various RK schemes (along with the accompanying
CPU times in Table II) that theRK4 scheme is the best of all the explicit methods considered,
and becomes comparable in cost to theFE/BEmethod, particularly when the viscosity is
reduced. While the semi-implicit approach is very similar in principle to theRK1 method,
there is clearly a great deal of advantage to be gained from its implicit treatment of the
diffusion term, about which more will be said in the next section.

4.2. Stability of the FE/BE Scheme

We begin by rewriting the equations of motion and identifying the terms that are discre-
tised implicitly and explicitly:

∂u
∂t
= 1

ρ
S̄σ ∂

2X
∂s2︸ ︷︷ ︸

explicit

+ µ
ρ
1u− 1

ρ
∇ p︸ ︷︷ ︸

implicit

, (19)

∇ · u = 0, (20)

∂X
∂t
= Su︸︷︷︸

explicit

. (21)

The symbolsS andS̄ represent the delta function interpolation operators, which transfer
between grid quantitiesV(x) and fibre grid quantitiesW(s) as follows:

SV(x) =
∫
Ä

V(x) · δε(x−X(s, t)) dx and S̄W(s) =
∫
0

W(s) · δε(x−X(s, t)) ds.

If we discretise these equations in time only, using theFE/BE scheme described in
Section 2.2, then we have

un − kµ

ρ
1un + k

ρ
∇ pn = un−1+ k

ρ
S̄σ d2

ds2
Xn−1, (22)
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∇ · un = 0, (23)

Xn = Xn−1+ kSun, (24)

where we have abused notation somewhat by denoting semi-discrete quantities at timetn
(which are continuous in space only) by a superscript(·)n.

We now investigate the time stability of solutions to Eqs. (22)–(24) by assuming thatun

andXn depend on the solutions at the previous time step as

un = γun−1 and Xn = γXn−1,

where theamplification factorγ replaceseλt from the time-continuous analysis. Once again,
we look for separable solutions of the form{

u
p

}n

= eı̂αx

{
û(y)

p̂(y)

}n

and Xn = eı̂αθsX̂n,

which on substitution into the time-discrete equations yields a system of ODEs for the
solution components as functions ofy. It should be clear to the reader that the solution
process closely parallels that described in Section 3.2, and so we omit the details of the
derivation. At the end, we obtain a dispersion relation which gives the amplification factor
in terms of the other parameters in the problem. TheFE/BEscheme is stable provided that
all γ arising from this equation satisfy|γ |< 1.

As before, we apply a Newton iteration, with continuation in the smoothing radiusε, to
solve the dispersion relation over a range of time steps and for all wavenumbersα/2π ∈
[1, 64]. The character of the amplification factors is exactly what we would expect given
our previous experience with the modal analysis of the continuous problem. We find that
for time steps below a certain critical value,k< kmax, all roots satisfyγ <1 and the first to
become unstable fork> kmax corresponds to a tangential mode of oscillation in the fibre.
The critical time stepkmax is given in Table III for various forcing parameters, with the
corresponding time step limit observed in computations with the same fibre force. In all
cases, our analysis predicts akmax which is consistently one-half as large as the actual time
step limit encountered in computations. Considering the approximations that have been
made in our idealised discretisation, this discrepancy is not surprising.

4.3. Semi-implicit, Iterative Schemes

Instead of solving Eqs. (22)–(24) in an explicit, two-step process, the iterative scheme
in [13] couples the fibre evolution equation implicitly with the solution of the fluid equations.

TABLE III

A Comparison of the Maximum Time Step Pre-

dicted by the Theory and Observed in Computations

for the FE/BE Method, with N = 64,ε = 1
64,µ = 1

σ kmax (theory) kmax (computed)

102 4× 10−3 8× 10−3

103 2× 10−4 6× 10−4

104 6× 10−5 1× 10−4

105 8× 10−6 2× 10−5
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In essence, this involves replacing quantities(·)n at time leveln with values(·)n,m, where
m refers to the iteration number. The coupling comes from replacingXn−1 in Eq. (22) with
Xn,m−1. We make a change of notation here, and write the Stokes solve represented by
Eqs. (22) and (23) symbolically, using the operatorH as

un,m = H
(

un−1+ k

ρ
S̄σ d2

ds2
Xn,m−1

)
,

Xn,m = Xn−1+ kSun,m.

By substituting the expression forun,m into the fibre evolution equation, the iteration may
be written as a single equation forX,

Xn,m = Xn−1+ kSHun−1︸ ︷︷ ︸
Zn−1

+SHS̄ σk2

ρ

d2

ds2︸ ︷︷ ︸
A

Xn,m−1,

or more compactly as

Xn,m = Zn−1+ SHS̄AXn,m−1. (25)

In practice, this iteration converges very slowly, and the convergence is speeded considerably
by using the modified iteration

(I −DA) (Xn,m − Xn,m−1) = Zn−1− (I − SHS̄A)Xn,m−1, (26)

which clearly has the same solution as (25). Here,I signifies the identity operator, and
D = SS̄ is a scaling factor. In the fully discrete setting,(I − SHS̄A) is a dense matrix,
while (I −DA) is a block tridiagonal preconditioner which accelerates convergence.

To quantify the rate of convergence, we again look for solutions of the formXn,m =
eı̂αxX̂n,m on each of the subdomainsÄ±0 andÄε0, and solve the resulting system of ODEs
as before. While the solution procedure is very similar to that seen above, it is important
to realise that there is one very significant difference from the continuous problem: rather
than define the fluid force implicitly in terms of the fibre position, we compute the forceon
the basis of the fibre position from the previous iteration. Consequently, the semi–discrete
analogue of the fibre iteration (26) is an explicit formula forX̂n,m in terms ofX̂n,m−1, and
so our analytical solution procedure is simplified considerably.

Equation (26) reduces to an iteration of the form

BX̂n,m = CX̂n,m−1+ Rn−1,

whereB andC are 2× 2 matrices, andRn−1 is a 2-vector with entries evaluated at the
previous time step. Since we are only interested in the rate of convergence of the iteration,
it is expedient for us to consider the difference between successive iterates

En,m = X̂n,m − X̂n,m−1,

which satisfies the recurrence relation

En,m =MEn,m−1,
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whereM = B−1C is theiteration matrix. The convergence properties of the iteration are
manifested in the eigenvalues ofM, which can be found using MAPLE as

%t = σtπ
4k2 sin2(αε)(−π4+ π4e−2αε + 5π2α3ε3+ 3α5ε5+ 2π4αε)

αε(α2ε2+ π2)2
(−4α4ε7+ 8α2ε5π2− 4ε3π4+ 3σtπ4k2 sin2(αε)

) , (27)

%n = σnπ
6k2 sin2(αε)(π2− π2e−2αε + α3ε3+ π2αε)

αε(α2ε2+ π2)2
(−4α4ε7+ 8α2ε5π2− 4ε3π4+ 3σnπ4k2 sin2(αε)

) . (28)

Just as the solution to the continuous problem exhibited a decoupling between normal and
tangential modes, so also does the convergence of the semi-discrete scheme depend on
two distinct eigenvalues, corresponding to normal and tangential forcing. The convergence
of the scheme is governed by%max=max(|%t |, |%n|): if %max< 1, the iteration converges;
otherwise it diverges. A contour plot of%max is given in Fig. 7, for parameter valuesµ= 1
andσ = 104. We observe that the iteration always converges, which is to be expected, since
the scheme was proven to be unconditionally convergent in [13]. Furthermore, for a given
time step the slowest mode to converge is the tangential mode; therefore, just as tangential
modes provide the greatest contribution to the stiffness in the problem, so also do they
govern the convergence of theMP iteration.

We also performed numerical experiments on the same “flat fibre” model problem used in
Section 3.3 in order to verify the predicted convergence rates, and the results are summarised

FIG. 7. Convergence rate contours for theMP scheme. The vertical dotted line separates the parameter space
into regions where the convergence rate for the normal mode (left) or the tangential mode (right) is largest (σ = 104).
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TABLE IV

Convergence Rates Predicted by Theory and Observed in Full Immersed Boundary

Computations for the MP Iterative Scheme

σ = 103 σ = 104 σ = 105

k Theor. Comp. Theor. Comp. Theor. Comp.

0.0001 0.01 0.01 0.08 0.08 0.43 0.43
0.0025 0.05 0.05 0.33 0.33 0.75 0.76
0.0005 0.17 0.18 0.62 0.62 0.84 —
0.0010 0.43 0.43 0.79 0.79 0.87 —
0.0025 0.75 0.73 0.86 — 0.88 —
0.0050 0.84 0.84 0.88 — 0.88 —

Note.The “—” entries correspond to instances where the scheme became unstable.

in Table IV. Convergence rates were computed from numerical results using the formula

Rate= Resm+1

Resm
,

where

Resm =
[

1

Nb

Nb−1∑
l=0

∥∥Xm
l − Xm−1

l

∥∥2
2

]1/2

is the residual at iteration levelmand‖·‖2 is the standardL2–norm on vectors. The predicted
convergence rates were found by reading off%max for the dominant (α= 2π ) mode on the
contour plot in Fig. 7, which always correspond to the normal fibre modes. Even though the
tangential convergence rate is invariably the largest for the entire range ofα in any given
computation, and hence should dominate the convergence after a large number of iterations,
they are also the modes whose amplitudes decay much more rapidly in time. Within every
time step, only ten or so iterations were typically required to satisfy the residual tolerance,
and so it is to be expected that the lowest wavenumber, normal modes will dominate the
actual convergence rate observed in computations.

The blank entries in the table correspond to instances where the computation was un-
stable, which seems to go against our analytical predictions of unconditional convergence.
However, we believe that this arises from a time instability which affects the numerical
scheme when the time step is taken too large. In fact, the results in [13, p. 269] show that
even though the scheme is convergent andmorestable in time than the fully explicit method,
it is not alwaysstable. While our analysis captures the convergence rate quite well, it is
unable to predict onset of instability in computations.

4.4. Comparison

Before closing our discussion of time discretisations, we will draw a comparison be-
tween the explicit and semi-implicit approaches just described. We consider another test
problem more typical of that seen in the literature [11, 13, 15], in which the fibre is a closed
loop which initially has the shape of an ellipse. As shown in Fig. 8, the semi–axes of the
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FIG. 8. The “ellipse” test problem: the initial fibre position is an ellipse with semi-axes 0.4 and 0.2 cm. The
equilibrium state is a circle with radius approximately 0.2828 cm.

ellipse are of lengths 0.2 and 0.4 cm, and we use the same linear force density function
with stiffness constantσ . The ellipse will tend toward an equilibrium state that is a circle
with the same area as that of the original ellipse (and radius of approximately 0.2828 cm)
because the fluid is incompressible. The reason for choosing this problem rather than the
sinusoidally perturbed flat fibre is that the area (or “volume”) of fluid inside the ellipse
can be used as a measure of the numerical error. Immersed boundary computations are
known to experience loss of volume, which becomes significant during more extreme flow
conditions such as those we are considering here with largeσ . This volume loss prob-
lem was identified in [18] and shown to arise not from fluid passing physically through
the immersed boundary, since the fibre points move along streamlines, but rather from
the fact that the interpolated velocity field through which the immersed boundary moves
is not discretely divergence-free. LeVeque and Li showed in [11] that the volume loss
in the immersed boundary method for a problem nearly identical to our ellipse example
grows linearly in time. A modification of the divergence stencil was developed in [18]
which reduces the volume loss significantly (at the expense of an increase in the cost of
delta function interpolation). We have not implemented this modified stencil in our simu-
lations.

We applied theRK1,RK4,FE/BE, andMPmethods to this problem and list in Table V the
maximum time steps and CPU times required for each method for two sets of computations
with σ = 104 and 105. Among the fully explicit schemes, theRK4 method is up to an order of
magnitude more efficient than Forward Euler (orRK1). We also see thatRK4 is competitive,
in terms of CPU time, with theFE/BEmethod.

Moving to theMP scheme, we saw in Table IV that coupling the fibre and fluid together
within an iteration does allow a time step much larger than that for explicit schemes to
be taken. However, there is a corresponding increase in the rate of volume loss, which
is given in Table V as a change in area relative to the initial 0.251 cm2. We chose two
representative time steps for theMP scheme in Table V, from which it is clear that while
stability restrictions are much more lenient than those for the other schemes, the method
suffers from a much more severe loss of volume ifk is taken too large. In fact, there is no
advantage to using the iterative scheme if we require a level of volume loss comparable to
that experienced by the other schemes.
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TABLE V

Comparison of Computational Costs for Several Explicit and Semi-implicit Schemes

with N = 64 andNb = 192

σ = 104, tend= 0.020 σ = 105, tend= 0.005

Scheme kmax % Vol. loss CPUa kmax % Vol. loss CPUa

RK1 1.3× 10−5 2.8 114.31 1.0× 10−6 4.4 372.49
RK4 8.0× 10−5 2.4 66.51 3.0× 10−5 4.4 44.16
FE/BE 7.0× 10−5 4.4 28.45 1.0× 10−5 5.2 49.00
MP 8.0× 10−5 8.4 56.62 2.5× 10−5 6.8 44.00

1.6× 10−4 13.1 29.99 5.0× 10−5 11.9 26.72

Note.The time stepkmax was chosen to be the largest allowed by the method for stability, except for theMP
scheme (which always converged). The “volume loss” is computed relative to the equilibrium value of 0.251 cm2.
CPU timings were taken on an SGI Origin 2000 (4× 195 MHz R10000 processors, 512 Mb RAM).

a In seconds.

We can conclude from these results that while theMP iteration may be unconditionally
convergent and allow significantly larger time steps to be taken, the time step is still limited
by the accumulation of error in the incompressibility condition. Clearly, there is a need
for more work to be done on developing new time-stepping strategies to treat the force
implicitly in some type of iteration, while at the same time controlling the volume error.

Our observation that an appropriately chosen explicit discretisation performs as well as
or better than any of the implicit methods used in practice, particularly when the fibre force
is large, should prove to be very helpful in improving the performance of the immersed
boundary method. Since theFE/BE method handles the fibre terms in the equations with
a Forward Euler step, it seems reasonable to suppose that we can take advantage of the
particular nature of the fibre modes by combining a Runge–Kutta discretisation for the fibre
along with implicit handling of the remaining terms in the equations. A class of schemes
that fits these requirements exactly is the Implicit–Explicit Runge–Kutta (orIMEX–RK)
family introduced in [1]. These methods have the additional advantage that they require
minimal changes to the existing logic in the immersed boundary code. We applied sev-
eral IMEX–RKmethods of various orders to the immersed fibre problem, and found that
the performance was comparable to theRK4 andFE/BE results, with the latter differing
from the first orderFE or RK1 method only in its implicit treatment of diffusion. While
this outcome is somewhat disappointing, our straightforward implementation clearly leaves
room for further investigation. We expect that more sophisticated approaches may lead to
significant improvements, which may become more evident in Navier–Stokes computations
with high Reynolds number, convection-dominated flows.

5. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the immersed fibre problem with a smoothed delta-
function force. By restricting wavenumbers to a fixed range [1, N] we were able to in-
vestigate “idealised discretisations” which neglected discrete grid effects. Our analysis
was able to predict observed time step restrictions for several explicit and semi-implicit
time-stepping methods. Our theoretical results suggested that the explicit time-stepping
schemeRK4 would be appropriate for this problem and we demonstrate thatRK4 can give a
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performance comparable to that of the standardFE/BE scheme for extreme conditions,
such as those arising from large fibre forcing and small viscosity. We observed that the
stiffest modes arise from the class of tangential fibre oscillations. It is possible that some
type of preconditioning strategy based on this special property of the solution, perhaps by
performing a local linearisation that decouples the normal and tangential motions of the
fibre, may lead to more efficient iterative schemes. A similar technique was used in [9] for
removing the stiffness in interfacial flows governed by surface tension effects. This will be
the subject of future work.

APPENDIX: DISPERSION RELATION

The dispersion relation summarised in Eq. [18] asSεn(β) · Sεt (β) = 0 has two factors that
can be obtained with the aid of MAPLE:

Sεn(β) = −4ε2β3(α2ε2+ π2)2(β2ε2+ π2)2(α2− β2)2

+ σnρ
2D̂ 2

ε

µ2
[π4αβ3(β2ε2+ π2)2(1− e−2αε)− π4α4(α2ε2+ π2)2(1− e−2βε)

+ εα2β(α2ε2+ π2)(β2ε2+ π2)(α2− β2)(3ε4α2β2+ 2ε2π2(α2+ β2)+ 2π4)],

Sεt (β) = 4ε2β(α2ε2+ π2)2(β2ε2+ π2)2(α2− β2)2

+ σtρ
2D̂ 2

ε

µ2
[π4αβ(β2ε2+ π2)2(1− e−2αε)− π4α2(α2ε2+ π2)2(1− e−2βε)

− ε3α2βπ2(α2ε2+ π2)(β2ε2+ π2)(α2− β2)].

An asymptotic expansion of both factors (see [21] for details) for small values of the
smoothing radiusε indicates that

Sεn(β) = S0
n(β)+ εS0

n(β)+O(ε2),

Sεt (β) = S0
t (β)+O(ε),

whereS0
n(β) andS0

t (β) are the dispersion relations from the “jump problem” withε = 0,
given in [23]. Therefore, the modes for the smoothed delta function problem reduce to those
of the jump formulation asε→ 0.
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